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Existence and properties of post-gel solutions for the 
kinetic equations of coagulation 

F Leyvraz 
DPMC, Universite de Geneve, 1211 Geneve 4, Switzerland 

Received 13 December 1982 

Abstract. The kinetic equations of coagulation with kernels R,, are studied for both 
factorisable (Rt, = r,r,) and diagonal (R,, = A & )  kernels. It is rigorously shown that they 
allow solutions of the type c,(f) = a,/t for suitably chosen a,. These solutions are further 
shown to have finite mass if R,, - j d  for d > 1. The asymptotic behaviour of the a, is also 
studied and found to agree with numerous previous findings. 

1. Introduction 

Some interest has recently arisen in the following model for polymerisation: polymers 
react irreversibly by the bonding of reactive sites, the number of which is assumed to 
grow at most as fast as the size of the polymer. More simply, if Ai denotes a j-mer: 

Rjk S rjrk 

(kernels violating these conditions will not be discussed here, as they are not physically 
meaningful). This leads to the following kinetic equations: 

Aj+Ak + Aj+k r , / j  bounded for j + CO 
R, k 

where ci(t) is the concentration of A; at time t. In the case 

Rik = (Aj +B)(Ak + B )  

corresponding to the Flory-Stockmayer model of gelation, an exact solution of 
equations (1) could be found for all times (Ziff and Stell 1980, Leyvraz and Tschudi 
1981). In particular it was found that after a certain finite time all concentrations 
decrease and therefore the quantity representing total mass 

is not conserved any more. This indicates the presence of an infinite cluster of finite 
total mass. This, however, makes it difficult to say whether this solution is physically 
significant and whether the infinite system (1) retains its validity after gelation. This 
question has been extensively discussed by Ziff (1980) and it is fairly clear that adding 
an interaction term between finite molecules and the infinite cluster is perfectly 
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justifiable and can modify the nature of the solution quite deeply. If, however, 

Rjk c r j  ' r k  r j / j + O  ( j+00)  (2) 

then it has been shown that the infinite system (1)-without further sol-gel interac- 
tion-is physically relevant in the following sense : the finite systems 

are kinetic equations for the polymerisation process described previously but limited 
in size to polymers no larger than N. These contain interaction between 'small' and 
'large' molecules, i.e., between what will in the limit of large N become sol and gel 
respectively. To consider the behaviour of 

appears therefore to be the most natural way to account for sol-gel interaction within 
the framework of the kinetic theory. But it was shown by Leyvraz and Tschudi (1981) 
that this limit is always a solution of the infinite system (1) if conditions (2) are fulfilled. 

What is now unanswered is the question whether gelation can occur under these 
conditions. Ziff (1980) has suggested the following: if 

Rjj  - id  
then gelation occurs if d > 1 and not otherwise. This would in particular imply that 

R. =j"k" 
ik 

leads to gelation if a >; and not otherwise. It has been rigorously shown (White 
1980) that no kernel satisfying 

Rii s i + j 
can lead to gelation. This corresponds roughly to saying that no physically meaningful 
kernel with d s l  can lead to gelation. Ziff (1980) has further shown that for the 
three types of kernels 

some moment of the cj's becomes infinite in finite time if n is so chosen that d > 1. 
It is the aim of this note to prove rigorously that solutions with finite mass violating 
mass conservation exist for the following kernels if their diagonal exponent d is larger 
than one: 

R .  i k  =ids. i k  (diagonal kernel) 

= j"k" (factorisable kernel). 

While it is fairly clear that the diagonal kernel has no physical realisation, it has been 
argued that the second describes branched polymerisation if a is taken to be some 
measure of the rate of growth of effective external area with size. It is not the purpose 
of this paper to discuss the possible validity of such assumptions: they are at best 
dubious, since it is, for example, not obvious that a small cluster 'sees' the same area 
of a large cluster as another large cluster. It must therefore be realised that the choice 
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of factorisable kernels is a matter of mathematical convenience far more than of 
physical necessity. 

In this respect the diagonal kernel is now interesting, as clearly any kernel with 
diagonal exponent larger than one is larger (i.e. contains more possible reactions) 
than the corresponding diagonal kernel. It will be shown, however, that this kernel 
always leads to violation of mass conservation in finite time. Hence on a qualitative 
level it appears likely that the criterion using the diagonal exponent is most probably 
correct for arbitrary reasonable kernels. It must, however, be noted that this argument 
is not rigorous, since the additional reactions could actually be unfavourable for 
gelation, since they destroy the extreme 'streamlining' effect of diagonal kinetics. One 
has in this case the following theorem. 

Theorem 1. Let R i k  =: with Ai >Bid (d > 1). Then: 
(i) there are numbers ai L 0 such that 

m 

jai <CO 
, = 1  

and 
ci( t )  = ai/(t  + C) 

is a solution of (1); 

conservation is violated after finite time. 
(ii) for monodisperse initial conditions gelation occurs at finite time, that is, mass 

This result is of course far too limited to be of any practical value. It does however 
indicate that reactions limited to polymers of comparable size are sufficient to bring 
about gelation. 

A more general type of kernel is 

Rik = rirk. 

For such kernels it has been hypothesised that the first part of theorem 1 can be 
carried over if 

r, 2 Bj" (cy > t )  
(see e.g. Hendriks et a1 1983, Leyvraz and Tschudi 1982). This will be proved 
rigorously in the following. 

Theorem 2. Let Rik = rirk, where 

Then there exist numbers a, 2 0 such that 

c,(t) = ai/ ( t  + C) 
is a solution of (1). Further, if cy > t ,  

Hence the existence of finite mass, non-mass-conserving solutions of (1) is proved if 
cy >$, that is if d > 1. In contradistinction to theorem 1, however, I cannot prove that 
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from realistic initial conditions (monodisperse or exponentially decaying in j )  mass 
conservation will be violated in finite time. For this it would be easiest to prove (as 
is possible in the case of theorem 1) that 

ci( t )  Dai/t (4) 

for some constant D. 

the proof of theorem 2, it will be seen that 
If the validity of (4) is assumed for r j  = j ” ,  it is plausible to reason as follows. In 

N 
1 (a  4) 

= jai -o (N(1-2a+E) /2  1 (a 4, 

1 - 2 a + c  c jaj = o(N 
j = l  

m 

j = l  

for every E > O .  It is easy to see that if tN is defined by 

then one obtains 

) (a >+), ( 1 - 2 u + € ) / 2  
fN = t ,  - O ( N  

It is easily verified that these scaling laws do indeed hold for a = 1. It is also easy to 
see that 

fN -1n N 

for Rij  = i + j ,  which has d = 1, similarly to a = i. It should be noted that the above 
results are exactly consistent with the following estimate on the order of magnitude 
of aj: 

ai - j -2a-1  (a  6;) 

- j-a-3’2 (a > 5). 
For a > 1 these were obtained, among others, by Hendriks et af (1983) and Leyvraz 
and Tschudi (1982). Stationary solutions of the equations (1) with a monodisperse 
source were shown by White (1982) to behave as j - a - 3 / 2  for all a > 0. The reason 
for the different behaviour for a < t is not obvious. 

As a final remark, it should be noted that the scaling behaviour of the times f N  
may be the reason for the discrepancy between numerical estimates of gelation times 
and theoretical estimates: Hendriks and Ernst (1982) and the author independently 
had found gelation times approximately 1.65 for a = 0.8 and N = 200, in clear violation 
of an inequality proved in Hendriks er a1 (1983): 

( 2 2 - 1  - l ) - I  s t ,  (equation (5.26)) 
leading to 

tm> 1.93. 

It should be noted, however, that tm - fN is of the order 
N = 200. 

various assertions concerning the large-j behaviour of the ai’s. 

which is about 0.2 for 

The rest of this paper will be devoted to proving theorems 1 and 2 ,  as well as the 
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2. Proof of theorem 1 

For the kernel 

Rjk = A $ i k  

and for monodisperse initial conditions one has 

c j ( t )  = 0 ( j # 2 k ) .  

Define 
( j = 2  k , k  = 0 ,  1 , .  . .). 

Y k ( t )  = C j ( t )  a k  =A,  

It follows that 
1 2 2 

?k =Zak- lyk- l  - a k y k *  

Putting the ansatz 

Y k ( t )  = A k / t  

in ( 5 ) ,  the time dependence drops out and I get 
2 1  2 -1 hk =(YkAk- i f fk - lAk- l ,  A o = ( ~ o .  

Clearly 

(Yk 3 B2dk 

and 
hk =(2ak)-’[1+(1+2(Ykak-lhZK-1)1/2]3(ak-1/2ak) 1 / 2  h k - 1 .  

Therefore 
f f k h k  3 (ak/2ak-1)”Zak-lAk-i 3 (at12 k ao) 1 / 2  . 

Hence 

But from (6)  one obtains 

and, multiplying out, 

But because of (7) 
k W 
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implying 

The first part of theorem 1 is therefore proved: there exist solutions of finite mass 
violating mass conservation. It now remains to prove that monodisperse initial condi- 
tions will lead to such a violation in finite time. 

Denote the solution of ( 5 )  with monodisperse initial conditions by Y k ( t ) .  I claim that 

Y k  ( t )  A k / ( f  f ff 0' ) (8 )  
for all t > O .  

for all I < k. It follows that 
For yo(r) this is obvious, since the equality sign actually holds. Now assume ( 8 )  

a 1  2 2 2 2 
Y k  = ? f f k - l y k - l  - f f k Y k  s f f k - l A k - 1 / 2 ( f  f f f i 1 ) 2 - f f k Y k .  

Define 

Clearly 
y k  (t) (Pk ( t i  0)  ( P k ( f ;  ff O A k )  = A k / ( t  + ff 0' 

proving (8) for all t > 0 and for all k. This implies 

thus proving all of theorem 1. 

3. Proof of theorem 2 

I now turn to the equations 

Putting the ansatz 

C j ( f )  = ffj/t 

in (9) one obtains 

I first prove the following lemma. 

Lemma 1. Let r, satisfy 

(i) rj > r l  ( i 3 2 )  
(ii) lim ry' = 0. 

J+m 

Then equations (10) have a positive solution. 
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Proof. Define 

ai = riai. 

Equations (10) become 

or, written otherwise, 
4 i- 1 

(116) 

Equation ( l l a )  determines the whole sequence (a j ) ; l  once a1 is known, which must 
then be so chosen as to fulfil ( l l b ) .  To show that this is possible, recast the problem 
as follows: define 

-1 f a k = r l  
k = l  

P i ( b ) =  1 .  

a: =&(b) /b  

1 Pi@) = rT1b. (12)  

Clearly 

satisfy ( l l a )  for all b and ( l l b )  if 
m 

j = l  

It is therefore enough to show the existence of a number of b satisfying (12) .  To this 
end define 

Clearly 

F& - 26 ( r  y 1  - cL1 )F, + 2 b P ~  0 

or otherwise 

F N  = b ( r  - cil ) { 1 - [ 1 - 2PN/b ( r  - ck1 )2]1'2}. (13) 
Now define bN as the number such that FN(z;  bN) has exactly convergence radius one 
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in the variable z .  Such a number exists, since 

y:,”(b) = y;N) ( l )b l -J  ( 1 4 )  

and FN(z  ; 1) has a finite, non-zero convergence radius. From ( 1 3 )  it follows that 

F N  ( 1 ; b N  ) = bN ( r  - Ckl ) PN (1  ; bN) = $bN(r;l- c;’ )* (15 )  

since F N ( z ;  b N ) ,  having only positive coefficients, has a singularity at z = 1. 
From the definitions of y;.” ( b )  it follows immediately that 

P j ( b )  y j N ) ( b )  

y; .N+l)(b)  s y;.”(b) 

for all j and N .  From this follows 

for all j and N.  Therefore the convergence radius of yl”(1)  can only increase and 
therefore bN only decrease with N. Since b N  > 0 one obtains that 

6 m =  lim b~ 
N-m 

exists. Remark now that 

and hence 
CO 1 pj(bCO) s rF1bm < m. 

j = l  

I now prove that 

thus proving that (PN(z ) ) :=~  is a Cauchy sequence in the space of continuous functions 
with the supremum norm proving (16). 

From (14) ,  (15)  and (16) it follows that 
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From (16) it follows equally that 

and 

for all z so small that FN(z  ; b,) exists for all N. It then follows that 

for z sufficiently small. However, since F ( z )  is an analytic function with positive 
coefficients, its first singularity will be on the positive real axis. By (17), clearly z = 1 
is a possibility, and since P ( z )  is a monotonic function in z analytic in l z ( < l ,  no 
singularity is possible for z < 1. Hence (18) is valid for z < 1 and by Abel’s theorem 
for z = 1 

proving that b,  is a solution of (12) and hence proving the lemma. 

1 now need the following, purely technical result. 

Lemma 2. Let the ai be positive numbers such that 

02 

f ( z ) =  1 U j Z J  
j = l  

has convergence radius one. Define 

I 

si= 1 ak 
k = l  

and let A > 0 be arbitrary. Then the statements 

are equivalent. 

The proof is given in the appendix. With this lemma I now prove the following. 

Lemma 3. Let the r j  satisfy the following conditions: 

6) rj > r l  ( 1 ’ 2 2 )  
(ii) r j  2 Bj”. 
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Then the solution ai of (10) (shown to exist by lemma 1) satisfy 

for any positive E .  

Proof. In the notation of lemma 1,  what I want to investigate is the behaviour of 

i 

k = l  
sj= 1 kr;'ak. 

Defining 

k = l  

I have 

if A > 1 -a. From lemma 2 we get g'(z)  = o[(l - z ) - ~ ]  implying 

1 

g ( l ) - g ( z )  =I g'(r) d t  = o ( l )  Jz' (1 - t ~ - ~  dt =o[(l  -z)'-^] 
Z 

and from (21) it follows that 

f ( z ) - f ( l )  = 0[ ( l - z ) (1 -A)~2]  

and since f ( z )  has positive coefficients 

f'(z c (f( 1)  - f (z)) / ( l  - 2) = o[( 1 - 2)-(A+1)'2] 

and therefore, by lemma 2, 

) 
. ( A + 1 ) / 2  uj = O(] 
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implying 

i 

Now two different cases appear. 

Case ( a ) .  1 + A  - 2 a  < 0 .  Then ( 2 3 )  implies immediately 

sj = O( 1 )  

and the statement of the lemma is proved. 

Case (b) .  1 + A  - 2 a  7 0. Then ( 2 3 )  implies 

1. . ( l + A - Z a ) / Z  
sj = O(] 

This statement, however, is identical to ( 2 2 )  except that A is replaced by 

A l = $ ( l + A  - 2 a ) .  

This process can be iterated, giving 

A, = ; ( I  +An-1-2a). 

As long as A n  > 0, I can state 

si = o(jAn). 

However, it is easy to see that 

lim h n = A , = 1 - 2 a .  
n-rm 

Hence, if a > 5, case (a) is found to hold after finitely many iterations. If a S f, I have 
for any E > O  

A, < 1 - 2 a  + E  

for some n, thereby proving the whole lemma and theorem 2 .  

Further, if a > $, I can clearly assume ( 2 2 )  for A = E > 0 arbitrary, since the si are 
in fact bounded. The whole procedure then leads to (see ( 2 3 ) )  

1 s l=O(l )+o( j  ( l - Z a + e ) / Z  

as was said in § 1 .  

4. Conclusion 

The kinetic equations defined by the kernels 
Rii = ids i .  and Ri .  = i a ja  
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were examined for the case 1 < d < 2 and < a < 1. Under those conditions it is well 
known that the solutions exist for all positive times (Leyvraz and Tschudi 1981). It 
could be shown of both kernels that they allowed finite-mass, mass-non-conserving 
solutions of the type 

q ( r )  = aJ(r + C) 
and in the case 

R.. = idsi. 
it could even be shown that from monodisperse initial conditions mass conservation 
must be violated at finite time. While this could not be proved in the second case, it 
remains highly plausible. Under very plausible assumptions it was found possible to 
derive the scaling behaviour of ‘gelation times’ observed on the first N concentrations 
as a function of N. 
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Appendix 

I want to prove the following. 

Lemma 2. Let the ai be positive numbers such that 

has convergence radius one. Define 

s i =  ak 

i 

k = l  

and let A > 0 be arbitrary. Then the statements 

(9 s, = o(n*)  ( n  +a) 

(ii) f ( z )  =0[(l-2)-A3 (2 + 1) 

are equivalent. 

Proof. Assume first s, = o(nA)).  If 

then the lemma is trivial. Else for every M and every E > 0 exists a z < 1 such that 

( j - M  sizj)/(;;l siz’> 3 1 --E. 
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Choose M so large that 

It follows that 

+ / ( l -&) ] ( l - z ) -A- l  

and hence 

W .  2 aiz’=( l -z )  1 siz’=O[(1-z)-*]. 
j = l  j = 1  

Assume now that 

f ( z )  = o[(l -z)-”]. 

It follows that 

thus proving the whole lemma. 
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